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MEGATREND SOLUTIONS IN PHYSICAL GEODESY 

Arne Bjerhammarl 
National Geodetic Survey 

Charting and Geodetic Services 
National Ocean Service, NOAA 

Rockville, MD 20852 

ABSTRACT. A technique for renormalization of integral 
equations is used for obtaining very robust solutions. 
The number of multiplications used for inverting the 
integral equations can be reduced dramatically and mostly 
only weighted means will be needed. 
proportional gain in computer time might be as much 
as los for the most favorable cases when using 1,000 
unknowns. 
Solutions have been obtained with increased accuracy 
compared with the classical technique of integral 
equations. 
but the method is optimal for a global approach with 
equal area elements. 
invariant with respect to the depth of the embedded sphere 
when using simpler models. 

Theoretical 

(Practical gains will be considerably less.) 

Surface elements could be of arbitrary size, 

The solutions were found strictly 

INTRODUCTION 

Classical geodesy has had to face a very difficult mathematical problem, namely 

the free boundary value problem. The most widely used technique was based on an 

application of resolvents for a strictly spherical boundary surface. The actual 

formulas requiring integration over the whole Earth were given by Stokes for the 

disturbing potential and by Vening Meinesz for vertical deflection. 

Molodensky presented integral equations that could give the solutions for a 

nonspherical Earth. The existence as well as uniqueness of a solution of the free 

boundary value problem was analyzed rigorously by Hb'rmander (1976). This study 

assumed a continuous gravity field. The existence of a solution was proved 

IPermanent address: Brinken 3, 18 274 Stocksund, Sweden. 

This study was performed during a 6-month stay in 1984 when the author was 
a Senior Visiting Scientist at the National Geodetic Survey, under the auspices 
of the Committee on Geodesy, National Research Council, National Academy of 
Sciences, Washington, DC. 
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for rather smooth surfaces (Hb'lder class H2+9. 
for constructing a solution. 

Hb'rmander also gave the foundations 

Gravity data are available only at discrete points on the surface of the Earth and, 

therefore, we have an infinite number of singularities. Existence and uniqueness of 

a solution are ascertained by using six assumptions: 

1. 

2. The solution generates all missing data. 

3. 
4. 
5. 
6. 

The solution satisfies all given data. 

The solution is harmonic down to a fully embedded sphere (or equivalent). 

The number of unknowns equals the number of observations. 

A radius vector intersects the surface only once. 

Uniqueness for the overdetermined case is obtained in the least squares sense 

for a Gauss-Markov model (excluding assumptions 1 and 4). 

This kind of solution is described in Bjerhammar (1962, 1964). The validity is 

obvious for the case with only a finite number of observations. 

A somewhat academic question is the validity of the solution if the number of 

observations becomes infinite. The following are some mathematical theorems of 

interest: 

1. Walsh (1929) proved uniform convergence for harmonic continuation down to an 

' internal sphere. There were no restrictions on the external surface, but the 

applied compact set had to be connected and at a finite distance from the 

surface of the Earth. 

2. Keldych and Lavrentieff (1937) extended the proof to the case when the compact 

set goes down to the surface of the Earth (unstable points excluded). 

3 .  Deny (1949) proved that extension to an unconnected complement is valid 

(multibody problem), but harmonic polynomials cannot be used. 

Goldberger (1962) made an extension of the Gauss-Markov'model to the case where the 

He called his technique "best linear residuals are used for additional "prediction." 

unbiased prediction in generalized linear regression models." 
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Krarup (1969) and Moritz (1972) independently developed an equivalent theory. 
It was called "least squares collocation" by these authors, and applied mostly to 

the "discrete free boundary value." 

also incorporated. 

The theory of stochastic processes was now 

Geodetic models of this type have often been designed without the trend function. 

This approach gives a minumum norm solution (not least squares solution) without 

any degrees of freedom if the covariance function is not estimable. 

intervals for estimated variances are then unlimited (infinite). 

solution has strongly influenced geodetic literature. 

Confidence 

The minimum norm 

The classical deterministic methods of Stokes and Vening Meinesz benefited from 

a simple structure of the solution. 

there were some obvious limitations affecting these integral methods: 

No systems of equations were needed. However, 

1. Vening Meinesz' formula had a singularity at zero. 

2. No predictions were involved. 
3. Nonspherical surfaces were excluded. 

The more recent Molodensky approach required solutions of integral equations 

with a theoretically infinite number of unknowns. 
was open to question. 

The existence of the solution 

The discrete approach by Bjerhammar, Krarup, and Moritz seemed attractive for 

local solutions where the number of unknowns can be kept small. However, a 

minimization of an L2-norm on the internal sphere will be strictly meaningful only 

for a global approach. Unfortunately, the global approach leads to unacceptable 

mathematical complications, and very little has been done with least squares 

collocation in a global mode. 

Present "megatrends" in geodesy (Bossler 1984) justify the application of global 
methods that can handle very large data sets without excessive use of computer 

time. Strictly discrete techniques are still needed. 
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The following study will display a robust technique where global solutions of 

increased accuracy can be obtained with very large savings in computer time. 

The largest system to be solved simultaneously for n unknowns is: 

Collocation and reflexive prediction: n eqs. ; multiplications: n3/6 

Proposed technique: Mostly weighted means with only one unknown. 

The computer time mostly increases with the third power of the number of 
unknowns. In reality much less savings are obtained because global systems 
will always contain many nondiagonal terms that are different from zero but 

still without any significance. It should finally be emphasized that the proposed 

technique is not directly suitable for local applications, but can be used after 

slight modifications. 

1. RENORMALIZATIONS OF INTEGRAL EQUATIONS IN GEODESY 

Modern geodesy benefits from using very large data sets. Computer solutions are 
required when dealing with several million observations. Furthermore, the solu- 
tions are often obtained from integral equations that formally postulate an 
infinite number of observations. 

elements and, therefore, the "band technique" is not directly applicable. It will 

be shown here how some typical geodetic problems can be solved with great 

simplification and improved accuracy. 
renormalization of the integral equations; similar procedures have been applied 
mostly in quantum field theory (Ingraham 1980). We choose, as an example, the 

free boundary value problem for the linear case, but the application is not 

restricted to this kind of problem. 

These integral equations mostly have no zero 

The mathematical procedure uses a 

Let Ag* be a gravity anomaly on a sphere with radius r . Furthermore, roAg* is 

considered harmonic. Then the gravity anomaly can be computed for points outside 

the sphere according to Poisson's integral 

0 

(1 .01)  
R 
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where 

d2 = 1 + s2 - 

= '0% and 

The g r a v i t y  anomaly a t  a 

The geocen t r i c  d i s t a n c e  of 

2s cos w 

f i x e d  p o i n t  P i s  denoted Ag and R is t h e  u n i t  sphere.  

t h i s  p o i n t  i s  r and t h e  geocen t r i c  ang le  between P and 
j j 
j j 

t h e  moving p o i n t  on R i s  w. 

omission of t h e  two f i r s t - o r d e r  Legendre polynomials (Bjerhammar 1962, 1964). 

A formally more r igorous  geodet ic  approach r e q u i r e s  

Gravi ty  anomalies a r e  known only  a t  discrete p o i n t s  and, t h e r e f o r e ,  eq.  (1.01) 

cannot be app l i ed  d i r e c t l y .  

approach and o b t a i n  t h e  l i m i t i n g  va lue  

For a d i s c r e t e  a p p l i c a t i o n ,  w e  p o s t u l a t e  an  equal  a r e a  

l i m  [ ( 4 ~ t ) ' ~ ( s * - s ~ ) . f J d ~ d R ]  [ZAg*d?/I d?] = Agj 
i 1 J1 i J1 i-bm R 

where w e  e a s i l y  o b t a i n  

(1.02) 

( 4 ~ t ) ' l ( s ~ - s ~ ) J J d - ~ d n  = s2 . 
R 

The n o t a t i o n  d i s  used i n  t h e  d i s c r e t e  mode i n s t e a d  of d ,  and Ag* i n s t e a d  of Ag* j i  i 
(Bjerhammar 1970, Svensson 1983). 

Clea r ly ,  w e  have a p r e d i c t o r  f o r  Ag i n  space and on t h e  g iven  sphere --- j -  

Svensson (1983) found t h i s  y i e lded  uniform convergence t o  t h e  c o r r e c t  

ex t r ao rd ina ry  economy, uniform p r e d i c t i o n  e r r o r s ,  and uniform es t ima tes  

propagat ion of observa t ion  e r r o r s .  

(1.03) 

va lue ,  

f o r  t h e  

The d i s c r e t e  formula de f ines  a p r e d i c t i o n  of a l l  missing p o i n t s  on t h e  sphere 

wi th  t h e  outcome space 
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(1.04) 

For further details, see B,,.rhammar (1970), Katsambalos (1980) and SGn..el 

(1980). The trivial case with s = 1 is simply the weighted mean which has been 
explored many times in geodesy and elsewhere when making predictions. 

The study by Katsambalos (1980) indicated no significant gain in accuracy when 

using the more complicated "least squares collocation." 

was considered as an objection against this "inversion-free predicticn." 

not a major issue because the prediction errors can be estimated simply by 

applying "autoprediction." See section 3 for further details concerning standard 
deviations. 

A lack of error estimates 

This is 

Sunkel (1980) noted that prediction between the given points shows a tendency of 
"step effects." 

and are not applicable in the-following application. 

These comments refer to the problem of predicting on the sphere 

In this approach, we consider solving the integral equation (1.01) for the case 

where discrete gravity data are given on the nonspherical surface of the Earth. 
The gravity anomaly Ag* on the internal sphere (fully embedded) will be an unknown 

quantity. Our solution will be obtained with the discrete renormalization defined 

by eq. (1.03). 

Our system of integral equations (1.01) is now replaced by a system of linear 
equations 

Ag = c Ag* 

where the elements of the matrix C are defined by (for n observations) 

n 
= s2dy3 / ,I d;: ("robust base function") 

'ji J J =  i=l 

(1.05) 

(1.06) 

Here Cji represents the elements of the base function. 
observations are given with "equal spacing" on the external surface with Ag*-values 

It is anticipated that the 
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on t h e  corresponding v e r t i c a l s .  

using the  s o l u t i o n  ( smal les t  poss ib l e  depth of t h e  i n t e r n a l  sphere i s  p re fe r r ed )  

For C . . / C i i  < lr5 ( j # i ) ,  we a r e  j u s t i f i e d  i n ,  
J1 

For C .  . / C .  ( j # i ) ,  we use ins tead  
J1 11 

Ag* = D-lAg + D-'(Ag - C D'lAg) 

(1.07) 

(1.07a) 

where D = C 

invers ion  of a diagonal matrix.  

f o r  i = j and Dji= 0 f o r  i # j .  The s o l u t i o n  r equ i r e s  only an j i  j j  
We transform t h e  l a s t  expression t o  ob ta in  

Ag* = (21 - D-'c)blAg . (1.07b) 

Even t h i s  s o l u t i o n  i s  d i r e c t l y  access ib le .  Fur ther  improvements a r e  hard ly  

j u s t i f i e d  i n  a g loba l  approach. The r e s idua l s  V a r e  then obtained 

V = Ag - C Ag* (1.08) . 
T I f  V V/n C E ~ ,  where E i s  t h e  observat ion e r r o r ,  then no f u r t h e r  improvements a r c  

needed. For convergence condi t ions see sec t ion  6 .  

Some f i l t e r i n g  i s  included i n  t h i s  approach. I f  add i t iona l  unused observat ions 

a r e  a v a i l a b l e ,  then these  can be used f o r  a determinat ion of var iances .  

s ec t ion  3 f o r  f u r t h e r  d e t a i l s .  

See 

For a depth t o  t h e  i n t e r n a l  sphere of h and a g r i d  d i s t ance  of L w e  have 

/ C .  .) E h3La3 f o r  h=l km and L=500 km). 
( ' j , ( j+ l )  J J  

A t  a g r i d  d i s t ance  of lo t h i s  r a t i o  w i l l  be about lom5. 

2.  PREDICTIONS 

Predic t ions  of Ag on the  sur face  of t h e  Ea r th  and i n  space a r e  obtained from 

eq. (1.05).  The geoidal  he ight  is  computed from t h e  d i s c r e t i z e d  Stokes formula 
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N = 2 (l/yq)s ro(1+2/d - 3d - 5s cos w .-3s cos w En u) AgT/n 
' i  q1 qi 

d2 = 1 + s2 -2s COS w s = ro/rq (2.01) 
qi 

u = ((d+1)2-~2)/4 n = number of unknowns 

= normal value of gravity at q 
yq 

Vertical deflections are obtained from the discretized Vening Meinesz' formula 

qi 1 
qi 

F = yil . s2  'sin w (8-2d-3-[3(d+1)2/2du] + 32x1 u)isin cos o1 O1 
qi qi 

(2.02) 

(2.03) 

where 01 

vertical deflection east. Predictions are made for a point q. We note that 

our earlier renormalization gives a solution for Ag* which is not restricted 

to isolated "Dirac points" on the internal sphere. For a selected surface 

element AS, we obtain 

is the azimuth from q to i, 5 vertical deflection north, and 
qi 

r'2(4n)'1 JJ Ag? dS = Ag:/n 
as 0 

when postulating an equal area approach and constant Age inside the selected 

surface element. For arbitrary spacing, see section 5. 
i 

3. STANDARD DEVIATIONS 

We assume that a subset of the observations has been excluded from the previous 

analysis. 

predicted Ag-values in the subset of unused data. 

Then we can make use of our solution of Ag* for a computation of 
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Then we have 

v = ag - c ag* (3.01) 

with variance 

T u2 = v v/n (3.02) 

where n is the number of residuals. 

can compute the standard deviation of any wanted quantity. 
squares estimates, see section 4. 
the variance. 

Knowing the variance of the observations, we 

For txaditional least 

Equation (3.02) gives an unbiased estimator of 

4. LEAST SQUARES SOLUTION 

First we consider a system without overdeterminations 

C Ag* = Ag . 

If n = m we obtain for C full rank 

Ag* = C'1Ag. 

The least squares solution is (for n > m) 

Ag* = (CTPC)-lC T P Ag 

6* = (Ag-CAg*) T P(Ag-CAg*)/ (n-m) 

where P is the weight matrix and 6* is the estimated variance. 

( 4 . 0 1 )  

( 4 . 0 2 )  

( 4 . 0 3 )  

(4.04) 

This kind of solution can be used in combination with MINQUE (Minimum Norm 

Quadratic Unbiased Estimation) procedures for a computation of unbiased estimates 

of the weight matrix. Formally mixed data can then be considered. The loss of 

stability could be a serious problem for such an approach. If gravimetric data 
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are mixed with altimetric data, then the embedded sphere should be replaced by an 

embedded ellipsoid of smallest possible depth, in order to obtain maximal diagonal 
dominance. 

5. ARBITRARY SPACING 

The previous sections hold for the case with "equal spacing." This concept 

is somewhat intricate for operations on a sphere. 

been presented by Rapp (1972) who used equal latitute differences and variable 

longitude differences to obtain equal area blocks. 
convenient approach. 
easily compute the gravity anomaly inside each equal area block. 
procedures can be considered: 

A practical procedure has 

This is probably the most 
I f  the observations are not given with such spacing we can 

Several 

1. Arithmetic means 

2. Weighted means 

3. Eq. (1.03) for inversion-free prediction 

4. Least squares collocation 

An alternative approach is to introduce unequal area surface elements of size 
AQM. 
replaced by 

The formulas (2.01) through (2.03) should then be modified and AgT/n 

where 

= AQi Mi cos Oi Pi 
AQi = latitude span of the i-th element (radians) 
Mi = longitude span of the i-th element (radians) 

Qi = latitude of the center of the i-th element 

(5.01) 

This technique will always impair the diagonal stability of the system. 
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6. CONVERGENCE 

A sufficient condition for convergence in an iterative approach is found if all 
diagonal elements are larger than the sum of all remaining elements in the same 
equation 

(6.Cl) 

Similar conditions for convergence are also formally valid for the Dirac 
approach. 
internal sphere is smaller than half the minimum grid distance. 

Convergence can always be expected for models where the depth t o  the 

7 .  THE ROBUST BASE FUNCTION COMPARED WITH THE OLD BASE FUNCTION 

The principal difference between the old and the robust base functions has its 
origin in the leading term. We have the following alternatives. 

Dirac approach: 

(7.01) 

Robust approach: 

. 1  S 2  . 1  (renormalized (7.02) 3 

r2 
0 - 

'ji r2 j i  Z(l/d3.) 51 5 = E. (1/Jd:) dji kernel) i 

lim K = 03 
jj 

lim C = 1 
jj 
r + r  j 0 j 0 

r + r  
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The difference between the two predictors is most clearly seen if r = r . Then 

the leading term will be infinite in the Poisson kernel and all predictions on the 
external surface (except for the observation points) will be equal to zero. 
robust approach is remarkable because it gives meaningful predictions between the 
given points on the sphere. 
points on the given sphere! 

j 0 

The 

The original Poisson formula cannot predict missing 

8. GLOBAL MODELS 

We s t a r t  with a t r i v i a l  model. Let Ag be the observed gravity anomaly a t  two 
given points  on an external spherical surface.  
(Ai;) for any point on the external surface in the joint "great circle," according 

The predicted gravity anomaly 

J 

to the Dirac approach (Bjerhammar 1976), is then 

Af4 (l+s2-2s cos x)'3/2+(l+s2-2s cos(w-x))-3'2 
(.i-sj -3+(1+~2 -2s cos w)-3jZ A i j  = 

(8.01) 

where 

d12 = d21, dll = d22, and Agl = Age = Ag . 

x is the geocentric angle between the first given point and the prediction point, 
W-x the geocentric angle between the second given point and the prediction point, 
and w the geocentric angle between the two given points. Furthermore, r is the 
radius of the internal sphere, r 

0 

the radius of the external sphere, and s = r /rj. j 0 

We note that the predictions are not invariant with respect to s. 

The predictions depend strongly on the choice of radius of the internal 
sphere, as shown in table 1 (page 14). 
"robust base function" is in an unfiltered rigorous solution. 

The corresponding prediction by the 

Ag*-determination (no Legendre polynomials excluded) 

12 



(8.02) 

(8.03) 

where 

d12 = dP1 , d l l  = d22 and Agl = Ag2 = Ag 
' 

Thus 

ag* = Ag* = s-2Ag = r2 ri2Ag . (8.04) 
1 2 J 

wi th  t h e  p r e d i c t i o n  f o r  any p o i n t  on t h e  e x t e r n a l  s u r f a c e  

~g = rEfr2  'AS* = Ag . 
J 

(8.05) 

Thus we have proved t h a t  t h i s  p r e d i c t i o n  i s  s t r i c t l y  i n v a r i a n t  w i th  r e s p e c t  t o  

t h e  r ad ius  of t h e  i n t e r n a l  sphere ( f o r  t h i s  simple model). 

The inva r i ance  i s  l o s t  t o  some degree i f  t h e  e x t e r n a l  s u r f a c e  is nonspher ica l  

However, t h e  p r e d i c t i o n s  a r e  almost o r  i f  t h e  g r a v i t y  anomaly i s  n o t  cons tan t .  

" invar ian t"  wi th  r e s p e c t  t o  t h e  r ad ius  of t h e  e x t e r n a l  sphere ,  as demonstrated 

i n  t h e  fol lowing example. 

Models wi th  extremely " t r icky"  da t a  ( l i k e  t h e  Molodensky model) are  expected 

t o  g ive  much b e t t e r  r e s u l t s  wi th  a Di rac  approach than  t h e  robus t  approach. 

Models wi th  "mixed" da t a  can be considered when us ing  an "embedded el . l ipsoid" 

wi th  a depth  of about  100 m. 
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Table 1.--Two identical observations of Ag are given on a spherical 
The separation between the given points is 5'. external surface. 

Predictions Ai are made at 0.5O (hu) equidistance between 
the given points. 

Geocentric angle 
between the closest Dirac approach Robust approach 
given point and 

point 
w = o  ag, = 1.000000 Ag 1.0000 Ag 1.000 Ag 1.000 Ag 

the prediction s = 0.999 s = 0.9 s = 0.999 s = 0.9 

w = 0.5O Agn = 0.001480 Ag 1.0332 Ag 1.000 Ag 1.000 Ag 

w = 1.00 Ag3 = 0.000190 Ag 1.0567 Ag 1.000 Ag 1.000 Ag 

w = 1.5O Ag4 = 0.000060 Ag 1.0718 Ag 1 .OOO Ag 1.000 Ag 

w = 2 .0°  bg, = 0.000030 Ag 1.0801 Ag 1.000 Ag 1.000 Ag 

u1 = 2.5O & = 0.000024 Ag 1.0827 Ag 1.000 Ag 1.000 Ag 

For the Dirac approach in table 1 we used ro= sr Here the corresponding 
j' 

robust approach is strictly invariant with respect t o  the radius of the internal 
sphere. 

A test model was studied with point'estimates of the gravity anomaly for the 
center of each individual surface element. A numerical solution was made with 
harmonic coefficients from GEM 10B. 

area 5O x 5O grid. 
outside the given points. The number of unknowns was 1,654. The following 

Gravity anomalies were given in an equal 
Predictions were made of Ag and N at approximately 900 points 

prediction errors (rms) were obtained. 

Dirac COVA 

rms N m 2 10.2 

rms Ag mgal 2 13.0 

s=O. 90 s=O .95 s=O .97 
f14.954 23.81 29.87 
211.38 26.09 f3.95 

Robust 

s=O .95 s=O . 99 s=O. 999 

21.96 f2.09 fl.96 

f7.05 f6.64 26.48 

COVA solutions were made according to model 4 of Tscherning-Rapp (1974) 
(four iterations). 
s = (rj-b/2)/rj=0.95, where b is the grid distance. 

Optimum value for the Dirac approach is expected for 
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Predictor 

(meters) model 4 
COVA DlRAC approach 

s = 0.9 s = 0.95. s = 0.97 
Robust approcch 

s=O.95 s=0.99 . ~=0.999 

Test for Variation of Depths to the Internal Sphere 

*Expected optimal s-values tdepth = half grid distance) 

Figure 1.--Global predictions of geoidal heights from an equal area 
model with 1,654 points .  

The COVA model is a least squares collocation solution with prescribed 

parameters, according to Rapp and Tscherning (1974). 

based on Bjerhammar (1964) and (1976). 

eq. (1.07a). 

respect to theoretical values in the spherical harmonic expansion. 

harmonics were included. 

size as the errors introduced when representing the surface element by its point 

estimate at the center of the element. 

Considerable improvement can be expected from estimates with mean values (for 
surface elements). 

The Dirac approach is 

The robust approach is according to 
The rms values have been computed from the prediction errors with 

All available 
The errors of the robust approach are about the same 

All studies are based on point estimates. 

All solutions were made with single precision. The COVA solution benefits from 

the favorable choice of degree variances which is suppose to correspond closely 

to the 'true' harmonic coefficients in GEM 10B. The lower accuracy might be 

explained by the poor condition number, lack of isotropy, and humogeneity. Other 

explanations cannot be excluded. 
(See f i g .  1.) 

A better covariance function might be found. 
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The Dirac approach is useful in a Gauss-Markov model with overdeterminations. 
Least squares estimates of the variance are then obtained. 

Robust solutions were computed according to eq. (1.07b). The solutions were 

almost invariant with respect to the choice of s-values for the selected range 

(contrary to the Dirac approach). 

of Ag* were almost negligible. 

but varies smoothly on the internal sphere. 

Computational costs for the robust computation 

We note that the robust Ag* is not a Dirac quantity 

The test model was based on a data set supplied by Prof. Richard H. Rapp of Ohio 

State University. The results for the robust approach are mapped in figure 2. 

9. LOCAL MODELS 

The robust approach seems directly justified for global models, and optimal 

application can be expected for an equal area approach, according to Rapp (1972). 

If a global solution is available, then there is still an interest in finding 

improved local'solutions. For this purpose, the difference between the observed' 

and the global gravity anomaly can be computed. 

= Ago - - - 
agglobal %oca1 s e rved 

where the global gravity anomaly is predicted locally by using eq. (1.05). 

The local solution is difficult to obtain because rugged topography can compli- 
The most extensive study of various solutions was made by cate the computations. 

Katsambalos (1981), who used a model according to Molodensky with the following 

parameters : 

Region size: 

Grid interval: 1' 

Inclination of the cone: 10.543O 

Number of anomalies: 576 ' (Green method: 57,600) 

0.40° x 0.40°: Predictions for 10,000 m above the ground 

16 



Figure P.--Robust solution made from 5' x 5O, equal area gravity anomalies (1,654 unknowns on a 
microcomputer). Robust approach with s = 0.999. Reference e l l i p s o i d  GRS 1980. 



Method Radial gravity (rms) Horizontal gravity (rms) 

Green 23.19 mgal 
Bj erhammar-Dirac 0.37 
Classical 9.36 
Krarup-Moritz2 ( 19.45) ? 

fO. 98 
0.14 
2.93 
(2.77)? 

Katsambalos (1981) presented no results from predictions at the physical 
surface but recommended here (for low altitudes) the Krarup-Moritz approach. 
S. Stocki (private communication) extended the model study to surface predictions 

and obtained the following results when using surface elements of constant 

latitude and longitude, with the pole at the top of the mountain. 

Gravity prediction: 

Depth of sphere B j erhamma r-Dirac Krarup-Moritz (COVA model 4) 
(m) (mgal) (mgal) 

10 
37 5 
750 

1,200 
1,500 
3,000 
6,000 

Vertical deflection: 

Depth 
(m) 

10 
375 
750 

1,200 
1,500 
3,000 
6,000 

29.04 
7.27 
5.82 

3.75 
2.30 
43.00 

---- 

2 87 
180 

506 
--- 
overflow 
overflow 
overflow 

Bj erhammar-Dirac Krarup-Moritz (COVA model 4)  
(arc sec) (arc sec) 

f 1.17 
0.97 
0.79 

0.56 
0.38 
5.91 

f 402 
961 

4,446 
overflow 
overflow 
overflow 

---- 

The actual figures were not disclosed for this model and grid interval. 
values given here represent a compilation from a larger number of rms values. 
Figures for the Krarup-Moritz model were obtained by extrapolation from solutions 
with greater grid intervals. 
Tscherning. Katsambalos (1981: p. 84) concluded, concerning the Bjerhamar-Dirac 
approach, "It is quite remarkable that even over the edge of the area at 5 km 
altitude, the errors are no more than 9%. More remarkable is the fact that 
directly above the model, at 5 km, 10 km and 20 km altitude, the errors are less 
than 3%, as opposed to almost 25% from the Green approach. 
errors from the Dirac approach are almost four times smaller than the Green 
approach. I' 

The 

Applied covariance function is according to 

... at 100 km the 
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For a nonsingular matrix K, the condition number K was computed from the 

relation 

= I I  K I I "  1 I K-l I I" 

where I I K 1 1 "  
were computed by S. Stocki. 

represents the infinity norm. The associated condition numbers 

Condition number: (A smaller condition number gives a more stable solution). 

Depth 

(m 1 
10 

375 

750 

1,200 

1,500 ' 

3,000 
6,000 

Bjerhamnar-Dirac 

11,437 

2,137 

1,930 

3,721 
25,628 

12,739,160 

Krarup-Moritz (COVA model 4) 

36,232,433 

111,324,562 
---I- 

1,434,135,264 
----- 

overflow 

overf ].ow 

All collocation computations were made with the covariance function of 

Tscherning and Rapp (1974) for the Krarup-Moritz approach. 

The condition number is a good measure of the stability of the solution. For 

a depth of 375 m, the condition number was about 5,300 times smaller when using 
the Dirac technique instead of the COVA model. 

Tscherning (1983) introduced a number of modifications to the covariance 
function and stated: "We should be able to get results as good as these 

obtained using the Dirac ... approach." He also showed a series of results with 

comparable quality, after deleting all degrees below 20 of the kernel. 

might be a corresponding improvement for the same omission in the Dirac approach. 

There 

An evaluation of the results from Katsambalos (1981), Stocki, and Tscherning 

(1983) for the Krarup-Moritz method is very difficult. 
balancing of the gravity field. 

They all excluded the 

The expectation of the gravity anomaly should 
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rms Bjerhammar-DIRAC Krarup-Moritz (COVA 41* 

I * Covariance function of Tscherning- 
Rapp (19741: model 4 

Figure 3.--Molodensky mountain study (local model). Predictions of 
gravity on the surface of the Earth. (.Investigator: S .  Stocki. See 

also Tscherning (1983) . 
be equal to zero in the least squares collocation. This condition is not 
satisfied in these studies of the Molodensky mountain model. The solutions 

presented are minimum norm solutions which are not necessarily unbiased. 

However, the unbiased approach which operates on the residuals seems to give 

worse results for the applied covariance function. Further investigations are 

needed. 

The best choice of a covariance function for a local model is somewhat unclear. 
In fact, the covariance function is not estimable for the actual geodetic model. 

Some empirical procedures can perhaps give the wanted information. 
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10. STRICTLY INVERSION-FREE PREDICTION 

From eq. (1.03) we obtain the following limiting value for the robust approach 

lim Ag* = Ag 

This means that we have an inversion-free approach on an external spherical 

surface: 

Ag-predictions: eq. (1.03) with s = 1. 

N-predictions: Classical Stokes' formula. 

r,q-predictions : . Classical Vening Meinesz' formula. 

The gravity anomaly prediction is made by the formula 

Agj = s21 Ag:dJ:pi / I dJ:pi 
i i 

(10. a )  

where 
(4n)'l(~~-s~)JJ'd'~dR = s2, anG p is given -y eq. 5.01  (but is mostly 

R i unity. ) 

For this kind of approach see Bjerhammar (1970). 

Svensson (1983) used an equivalent approach for prediction of geoidal 
heights. 

(10.2) 

where S(w) is Stokes' function and (4s)-'ffd-'dn = s. This predict ion formula 

avoids a previous prediction of the gravity anomalies on the external surface. 
However, the corresponding prediction formula for the vertical deflection is 
less satisfactory. (Correct values of p are needed in eqs. (10.2) and (10.31.) i 
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$Ij 5 = (4nyI-l 1 ngi 
i 

where V(w) represents the Vening 

( 4n)' JJd'*dQ 
Q 

The simplicity of these procedures 

1. The geoidal height is computed 

]p. JJ de2d!2 / 1 dm2p (10.3) cos 
wdi [sin i 'R i ji i 

Meinesz function and 

r + r  

r - r  

j 0 

j 0 
= + s log 

is obvious. Some comments are justified. 

with the weight kernel for Stokes' 
function given by djil . 
because it goes from positive numbers to negative numbers. 

weighting function avoids the associated singularity. 

The Stokes function itself cannot be used 

The selected 

2. The vertical deflection is computed with the weight kernel for Vening 

Meinesz' formula given by d'2 . There is a well-known singularity for r = r . ji j 0 

This technique uniquely defines the predictions on the external surface and in 
space for gravity anomalies and geoidal heights. 
difficult to handle because of the singularity for r = r . The singularity 

problem is avoided by using the robust approach with an internal sphere at a small 

depth . 

Vertical deflections are more 

j 0 

There is an important theorem given by Svensson (1983) for predictions of type 

(1.03) or equivalent. 

differentiable surface, embedded in space, by radial projection, to a sphere. 
particular, latitude and longitude can be used for coordinates on this surface. 

The proof shows that there is uniform convergence to the correct value for 

predictions on the sphere and in space when using an equal area approach and other 

specified grids. 

in space) will still be uniformly convergent to the correct value, but the 

necessary procedures are not directly available. 

The external surface is postulated to be a homeomorphic 

In 

For a nonspherical surface, the predictions on the surface (and 

A user of the Svensson approach for Stokes' as well as Vening-Meinesz' formulas 

has to observe that every summation must include the whole Earth. 

the case for eq. (1.01) when making predictions in space. 

This is also 
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Predictions on the external surface can of course be made with truncation if it is 

only a question of gravity anomalies. 

Svensson found that predictors of second power instead of the third power are not 

uniformly convergent to the correct value for predictions on the surface. 

eq. (10.31.) 

(See 

The inversion-free predictors give no direct estimates of the prediction errors. 

Methods for estimating the prediction errors are given in section 11. 

11. AUTOPREDICTION 

Autoprediction is defined as a technique employing a predictor on a set of given 

observations for the prediction of a selected observation from the subset of 
remaining observations. 

quality of the predictor. 

The rms value of these predictions s is a measure of the A 

Katsambalos (1980) asked for estimates of the standard deviation of a prediction 
by the inversion-free predictors. This is of special interest for evaluation of 

the given predictions. 

Least squares collocation gives direct measures of the prediction errors, but 

these estimates utilize a priori information which is crucial for the final 
results. 

most simple application. 

prediction error in the following way. 

The inversion-free predictors have no corresponding measures in the 

However, autoprediction gives a direct measure of the 

The inversion-free prediction (on the external surface) is defined by the 

predictor 

(11.1) 
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where 9 is the predicted value, yi an observation, d j ji the distance between 

prediction point and the observation point, pi 

(mostly an integer). 

the weight, and v a positive 

Now we consider a case where the predictions as well as the observations 

Then we have the "prediction error" e are available for all given points. 

h 

ej = 'j 'j 
For the predictions, we compute the following rms value 

the 

scalar 

(11.2) 

= d m  (11.3) 
J j 

SA 

where n is the number of observations. 

error from our predictor. 

using a sampling technique. 

Here s is an estimate of the prediction 

can be reduced by 
A 

The computer time for estimating s A 

Autoprediction is also a useful tool for comparing different predictors. The 

most simple application is a study of the influence of truncation. 

it can be found that the prediction of the gravity anomaly yields mostly the same 
prediction error i f  we use only the 10 closest observations instead of a l l  gravity 
anomalies. 

more sophisticated least squares collocation (Katsambalos 1980). 

For example, 

It has also been found that no improvement is obtained by using the 

Predictions of the gravity anomaly on the external surface can be made with 

various values of v. If pi = 1, then we have: 

1. v = 0. The prediction is.the arithmetic mean. 

2. v > 0. The prediction is a weighted mean. 

Svensson (1983) excluded v = 2, because this approach is not uniformly convergent 
to the true value. (See the formula for vertical deflection in eq. (11.3) above.) 

However, v = 2 has exceptional merits for local predictions of gravity anomalies 

in large data sets. 

combined with severe truncation, then the technique can be fully justified. 

can be verified by autoprediction on the actual data set. 

The time-consuming square roots can be avoided. If v = 2 is 
This 
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Filtering is obtained in the inversion-free approach by the following 

transformation 

where 6 is conveniently studied by using the autoprediction technique. 

without filtering show a slight step effect in the fully inversion-free approach 

(Siinkel 1980, 1981). 

filtering. 

Predictions 

This step effect can be eliminated by using appropriate 

Estimates of the prediction errors from autoprediction represent a pessimistic 
approach, because the distance to the closest observations will allways be less 

for any prediction point inside the given set of observations. 
prediction inside a rectangular grid can be made with a minimum distance of 

L/2, but autopredictions are made with a minimum distance of I,, if the grid 

distance is L. 

For example, 

Predictions on the external surface are fully justified according to eq. (11.1) 

for the following cases: 

Gravity anomalies from a given set of gravity anomalies. 

Geoidal heights from a given set of geoidal heights, e.g., altimetric 

heights. 

12. CONCLUDING REMARKS 

The classical, free boundary value problem has been given very simple 

solutions. These solutions are closely related to inversion-free solutions 

presented earl'ier which were made without an embedded sphere. 
harmonicity down to an internal sphere is used to justify a suitable 
renormalization of the original integral equations. Extremely small depths to 
the embedded surface can then be used to obtain extreme diagonal dominance for 

global models. 

However, 

Predictions will still be almost invariant with respect to the depth of this 
embedded surface as long as the depth is at least 10 times smaller than the grid 
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distance. 

methods with the advantage of the discrete predictors. 
reduction of data down to a sphere (or ellipsoid) in a spherical harmonic expansion 
or as a final presentation. If a more accurate solution is required, then the 
Dirac approach is a promising alternative when operating on the residuals. 
squares collocation is another alternative for cases with known covariance 
functions. 

The robust approach combines the simplicity of the classical integral 
It can be used for 

Least 

Estimates of variances are somewhat controversial for a problem where we 

have a primary integral equation and an infinite number of singularities. 
The inversion-free prediction uses a technique for autoprediction when 

estimating the prediction errors. 
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APPENDIX.--ROBUST PREDICTOR 

The mathematical j u s t i f i c a t i o n  f o r  t h e  robust p red ic to r  is concisely given 

below. If rAg is considered harmonic, then w e  can write i n  a rigorous way 

( 4 ~ ) " s ~  11 Ag* d-3 dn 

(4n)-' 11 d-3 dn 
n 

"Renormalized Poisson in t eg ra l "  n Agj = 

For an equal area approach w e  obtain 

The renormalized integral formula has given a d i s c r e t e  formula where t h e  

d i s c r e t i z a t i o n  e r r o r s  balance i n  t h e  numerator and t h e  denominator. 

29 
*U.S. Government P r i n t i n g  O f f i c e  : 1986 - 491-097146847 



U.S. DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration 
National Ocean Service 
Charting and Geodetic Services 
National Geodetic Survey, N/CG17X2 
Rockville, Maryland 20852 

OFFICIAL BUSINESS 
LETTER MAIL 

POSTAGE AND FEES PAID 
U.S. DEPARTMENT OF COMMERCE 

COM-210 
THIRDCLASS 


